
GNU m4

A macro processor

by Rene’ Seindal

Edition 1.0.3.

last updated 15 November 1992,

for GNU m4, Version 1.0.3

Copyright c© 1989-1992 Free Software Foundation, Inc.

This is Edition 1.0.3 of the GNU m4 Manual,
last updated 15 November 1992,
for m4 Version 1.0.3.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

1

1 Introduction to m4

m4 is a macro processor, in the sense that in copies its input to the output, expanding
macros as it goes. Macros are either built-in or user-defined, and can take any number
of arguments. Besides just doing macro expansion, m4 has built-in functions for including
named files, running Unix commands, doing integer arithmetic, manipulating text in various
ways, recursion, etc. . .

m4 can be used either as a front-end to a compiler, or as a macro processor in its own
right.

GNU m4 is mostly compatible with the System V, Release 3 version, except for some
minor differences. See Chapter 17 [Compatibility], page 38, for more details.

2

2 Using this manual

This manual contains a number of examples of m4 input and output, and a simple notation
is used to distinguish input, output and error messages from m4. Examples are set out from
the normal text, and shown in a fixed width font, like this

This is an example of an example!

To distinguish input from output, all output from m4 is prefixed by the string ‘⇒’, and
all error messages by the string ‘ error ’. Thus

Example of input line

⇒Output line from m4

error and an error message

As each of the predefined macros in m4 is described, a prototype call of the macro will
be shown, giving descriptive names to the arguments, e.g.,

regexp(string, regexp, opt replacement)

All macro arguments in m4 are strings, but some are given special interpretation, e.g.,
as numbers, filenames, regular expressions, etc.

The ‘opt’ before the third argument shows that this argument is optional—if it is left
out, it is taken to be the empty string. An ellipsis (‘...’) last in the argument list indicates
that any number of arguments may follow.

3

3 Problems and bugs

If you have problems with GNU m4 or think you’ve found a bug, please report it. Before
reporting a bug, make sure you’ve actually found a real bug. Carefully reread the documen-
tation and see if it really says you can do what you’re trying to do. If it’s not clear whether
you should be able to do something or not, report that too; it’s a bug in the documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to the smallest possible
input file that reproduces the problem. Then send us the input file and the exact results
m4 gave you. Also say what you expected to occur; this will help us decide whether the
problem was really in the documentation.

Once you’ve got a precise problem, send e-mail to (Internet) bug-gnu-

utils@prep.ai.mit.edu or (UUCP) mit-eddie!prep.ai.mit.edu!bug-gnu-utils.
Please include the version number of m4 you are using. You can get this information with
the command ‘m4 -V /dev/null’.

Non-bug suggestions are always welcome as well. If you have questions about things
that are unclear in the documentation or are just obscure features, please report them too.

4

4 Invoking m4

The format of the m4 command is:

m4 [options] [macro-definitions] [input-files]

All options begin with ‘-’, or if long option names are used, with a ‘--’. A long option
name need not be written completely, and unambigous prefix is sufficient. m4 understands
the following options:

-V

--version

Print the version number of the program. To see only the version number, use
the command ‘m4 -V /dev/null’.

-G

--no-gnu-extensions

Suppress all the extensions made in this implementation, compared to the Sys-
tem V version. For a list of these, see Chapter 17 [Compatibility], page 38.

-dflags

--debug flags

Set the debug-level according to the flags flags. The debug-level controls the
format and amount of information presented by the debugging functions. See
Section 9.3 [Debug Levels], page 19, for more details on the format and meaning
of flags.

-lnum

--arglength num

Restrict the size of the output generated by macro tracing. See Section 9.3
[Debug Levels], page 19, for more details.

-ofile

--erroroutput file

Redirect debug and trace output to the named file. Error messages are still
printed on the standard error output. See Section 9.4 [Debug Output], page 20,
for more details.

-Idir

--include dir

Make m4 search dir for included files that are not found in the current working
directory. See Section 11.2 [Search Path], page 25, for more details.

-e

--interactive

Makes this invocation of m4 interactive. This means that all output will be
unbuffered, and interrupts will be ignored.

-s

--synclines

Generate synchronisation lines, for use by the C preprocessor or other similar
tools. This is useful, for example, when m4 is used as a front end to a compiler.
Source file name and line number information is conveyed by lines of the form

Chapter 4: Invoking m4 5

‘#line linenum "filename"’, which are inserted as needed into the middle of
the input (but always on complete lines per themselves). Such lines mean that
the following line originated or was expanded from the contents of input file
filename at line linenum. The ‘"filename"’ part is often omitted when the file
name did not change from the previous synchronisation line.

-Hn

--hashsize n

Make the internal hash table for symbol lookup be n entries big. The number
should be prime. The default is 509 entries. It should not be necessary to
increase this value, unless you define an excessive number of macros.

-Nn

--diversions n

Allow for up to n diversions to be used at the same time. The default is 10
diversions.

-Q

--quiet

--silent Suppress warnings about missing or superflous arguments in macro calls.

-B

-S

-T These options are present for compatibility with System V m4, but do nothing
in this implementation.

Macro definitions and deletions can be made on the command line, by using the ‘-D’ and
‘-U’ options. They have the following format:

-Dname

-Dname=value

--define name

--define name=value

This enters name into the symbol table, before any input files are read. If
‘=value’ is missing, the value is taken to be the empty string. The value can
be any string, and the macro can be defined to take arguments, just as if it was
defined from within the input.

-Uname

--undefine name

This deletes any predefined meaning name might have. Obviously, only prede-
fined macros can be deleted in this way.

-tname

--trace name

This enters name into the symbol table, as undefined but traced. The macro
will consequently be traced from the point it is defined.

The remaining arguments on the command line are taken to be input file names. If
no names are present, the standard input is read. A file name of - is taken to mean the
standard input.

Chapter 4: Invoking m4 6

The input files are read in the sequence given. The standard input can only be read
once, so the filename - should only appear once on the command line.

7

5 Lexical and syntactic conventions

As m4 reads its input, it separates it into tokens. A token is either a name, a quoted string,
or any single character, that is not a part of either a name or a string. Input to m4 can also
contain comments.

5.1 Names

A name is any sequence of letters, digits, and the character _ (underscore), where the first
character is not a digit. If a name has a macro definition, it will be subject to macro
expansion (see Chapter 6 [Macros], page 8, for more details).

Examples of legal names are: ‘foo’, ‘_tmp’, and ‘name01’.

5.2 Quoted strings

A quoted string is a sequence of characters surrounded by the quotes ‘ and ’, where the
number of start and end quotes within the string balances. The value of a string token is
the text, with one level of quotes stripped off. Thus

‘’

is the empty string, and

‘‘quoted’’

is the string

‘quoted’

The quote characters can be changed at any time, using the built-in macro changequote.
See Section 10.2 [Changequote], page 21, for more information.

5.3 Other tokens

Any character, that is neither a part of a name, nor of a quoted string, is a token by itself.

5.4 Comments

Comments in m4 are normally delimited by the characters ‘#’ and newline. All charac-
ters between the comment delimiters are ignored, but the entire comment (including the
delimiters) is passed through to the output—comments are not discarded by m4.

Comments cannot be nested, so the first newline after a ‘#’ ends the comment. The
begin comment character can be included in the input by quoting it.

The comment delimiters can be changed to any string at any time, using the built-in
macro changecom. See Section 10.3 [Changecom], page 22, for more information.

8

6 How to invoke macros

This chapter covers macro invocation, macro arguments and how macro expansion is treated.

6.1 Macro invocation

Macro invocations has one of the forms

name

which is a macro invocation without any arguments, or

name(arg1, arg2, ..., argn)

which is a macro invocation with n arguments. Macros can have any number of arguments.
All arguments are strings, but different macros might interpret the arguments in different
ways.

The opening parenthesis must follow the name directly, with no spaces in between. If it
does not, the macro is called with no arguments at all.

For a macro call to have no arguments, the parentheses must be left out. The macro
call

name()

is a macro call with one argument, which is the empty string, not a call with no arguments.

6.2 Macro arguments

When a name is seen, and it has a macro definition, it will be expanded as a macro.

If the name is followed by an opening parenthesis, the arguments will be collected before
the macro is called. If too few arguments are supplied, the missing arguments are taken to
be the empty string. If there are too many arguments, the excess arguments are ignored.

Normally m4 will issue warnings if a built-in macro is called with an inappropriate number
of arguments, but it can be suppressed with the ‘-Q’ command line option. For user defined
macros, there is no check of the number of arguments given.

Macros are expanded normally during argument collection, and whatever commas,
quotes and parentheses that might show up in the resulting expanded text will serve to
define the arguments as well. Thus, if foo expands to ‘,b,c’, the macro call

bar(a foo,d)

is a macro call with four arguments, which are ‘a ’, ‘b’, ‘c’ and ‘d’.

6.3 Quoting macro arguments

Each argument has leading unquoted whitespace removed. Within each argument, all un-
quoted parentheses must match. For example, if foo is a macro,

foo(() (‘(’) ‘(’)

is a macro call, with one argument, whose value is ‘() (() (’.

It is common practice to quote all arguments to macros, unless you are sure you want
the arguments expanded. Thus, in the above example with the parentheses, the ‘right’ way
to do it is like this:

foo(‘() (() (’)

Chapter 6: How to invoke macros 9

It is, however, in certain cases necessary to leave out quotes for some arguments, and
there is nothing wrong in doing it. It just makes life a bit harder, if you are not careful.

6.4 Macro expansion

When the arguments, if any, to a macro call have been collected, the macro is expanded, and
the expansion text is pushed back onto the input (unquoted), and reread. The expansion
text from one macro call might therefore result in more macros being called, if the calls are
included, completely or partially, in the first macro calls’ expansion.

Taking a very simple example, if foo expands to ‘bar’, and bar expands to ‘Hello world’,
the input

foo

will expand first to ‘bar’, and when this is reread and expanded, into ‘Hello world’.

10

7 How to define new macros

Macros can be defined, redefined and deleted in several different ways. Also, it is possible
to redefine a macro, without losing a previous value, which can be brought back at a later
time.

7.1 Defining a macro

The normal way to define or redefine macros is to use the built-in define:

define(name, expansion)

which defines name to expand to expansion.

The expansion of define is void.

The following example defines the macro foo to expand to the text ‘Hello World.’.

define(‘foo’, ‘Hello world.’)

⇒
foo

⇒Hello world.

The empty line in the output is there because the newline is not a part of the macro
definition, and it is consequently copied to the output. This can be avoided by use of the
macro dnl (see Section 10.1 [Dnl], page 21, for details).

7.2 Arguments to macros

Macros can have arguments. The nth argument is denoted by $n in the expansion text, and
is replaced by the nth actual argument, when the macro is expanded. Here is a example of
a macro with two arguments. It simply exchanges the order of the two arguments.

define(‘exch’, ‘$2, $1’)

⇒
exch(arg1, arg2)

⇒arg2, arg1

This can be used, for example, if you like the arguments to define to be reversed.

define(‘exch’, ‘$2, $1’)

⇒
define(exch(‘‘expansion text’’, ‘‘macro’’))

⇒
macro

⇒expansion text

For an explanation of the double quotes, see Section 6.3 [Quoting Arguments], page 8.

GNU m4 allows the number following the ‘$’ to consist of one or more digits, allowing
macros to have any number of arguments. This is not so in Unix implementations of m4,
which only recognize one digit.

As a special case, the zero’th argument, $0, is always the name of the macro being
expanded.

define(‘test’, ‘‘Macro name: $0’’)

⇒

Chapter 7: How to define new macros 11

test

⇒Macro name: test

If you want quoted text to appear as part of the expansion text, remember that quotes
can be nested in quoted strings. Thus, in

define(‘foo’, ‘This is macro ‘foo’.’)

⇒
foo

⇒This is macro foo.

The ‘foo’ in the expansion text is not expanded, since it is a quoted string, and not a name.

7.3 Special arguments to macros

There is a special notation for the number of actual arguments supplied, and for all the
actual arguments.

The number of actual arguments in a macro call is denoted by $# in the expansion text.
Thus, a macro to display the number of arguments given can be

define(‘nargs’, ‘$#’)

⇒
nargs

⇒0

nargs()

⇒1

nargs(arg1, arg2, arg3)

⇒3

The notation $* can be used in the expansion text to denote all the actual arguments,
unquoted, with commas in between. For example

define(‘echo’, ‘$*’)

⇒
echo(arg1, arg2, arg3 , arg4)

⇒arg1,arg2,arg3 ,arg4

Often each argument should be quoted, and the notation $@ handles that. It is just like
$*, except that it quotes each argument. A simple example of that is:

define(‘echo’, ‘$@’)

⇒
echo(arg1, arg2, arg3 , arg4)

⇒arg1,arg2,arg3 ,arg4

Where did the quotes go? Of course, they were eaten, when the expanded text were
reread by m4. To show the difference, try

define(‘echo1’, ‘$*’)

⇒
define(‘echo2’, ‘$@’)

⇒
define(‘foo’, ‘This is macro ‘foo’.’)

⇒
echo1(foo)

Chapter 7: How to define new macros 12

⇒This is macro This is macro foo..

echo2(foo)

⇒This is macro foo.

If you don’t understand this, see Section 9.2 [Trace], page 18.

A ‘$’ sign in the expansion text, that is not followed by anything m4 understands, is
simply copied to the macro expansion, as any other text is.

define(‘foo’, ‘$$$ hello $$$’)

⇒
foo

⇒$$$ hello $$$

If you want a macro to expand to something like ‘$12’, put a pair of quotes after the $.
This will prevent m4 from interpreting the $ sign as a reference to an argument.

7.4 Deleting a macro

A macro definition can be removed with undefine:

undefine(name)

which removes the macro name. The macro name must necessarily be quoted, since it will
be expanded otherwise.

The expansion of undefine is void.

foo

⇒foo

define(‘foo’, ‘expansion text’)

⇒
foo

⇒expansion text

undefine(‘foo’)

⇒
foo

⇒foo

It is not an error for name to have no macro definition. In that case, undefine does
nothing.

7.5 Renaming macros

It is possible to rename an already defined macro. To do this, you need the built-in defn:

defn(name)

which expands to the quoted definition of name. If the argument is not a defined macro,
the expansion is void.

If name is a user-defined macro, the quoted definition is simply the quoted expansion
text. If, instead, name is a built-in, the expansion is a special token, which points to
the built-in’s internal definition. This token is only meaningful as the second argument to
define (and pushdef), and is ignored in any other context.

Chapter 7: How to define new macros 13

Its normal use is best understood through an example, which shows how to rename
undefine to zap:

define(‘zap’, defn(‘undefine’))

⇒
zap(‘undefine’)

⇒
undefine(‘zap’)

⇒undefine(zap)

In this way, defn can be used to copy macro definitions, and also definitions of built-in
macros. Even if the original macro is removed, the other name can still be used to access
the definition.

7.6 Temporarily redefining macros

It is possible to redefine a macro temporarily, reverting to the previous definition at a later
time. This is done with the built-ins pushdef and popdef:

pushdef(name, expansion)

popdef(name)

which are quite analogous to define and undefine.

These macros work in a stack-like fashion. A macro is temporarily redefined with
pushdef, which replaces an existing definition of name, while saving the previous defi-
nition, before the new one is installed. If there is no previous definition, pushdef behaves
exactly like define.

If a macro has several definitions (of which only one is accessible), the topmost definition
can be removed with popdef. If there is no previous definition, popdef does nothing.

define(‘foo’, ‘Expansion one.’)

⇒
foo

⇒Expansion one.

pushdef(‘foo’, ‘Expansion two.’)

⇒
foo

⇒Expansion two.

popdef(‘foo’)

⇒
foo

⇒Expansion one.

popdef(‘foo’)

⇒
foo

⇒foo

If a macro with several definitions is redefined with define, the topmost definition is
replaced with the new definition. If it is removed with undefine, all the definitions are
removed, and not only the topmost one.

define(‘foo’, ‘Expansion one.’)

Chapter 7: How to define new macros 14

⇒
foo

⇒Expansion one.

pushdef(‘foo’, ‘Expansion two.’)

⇒
foo

⇒Expansion two.

define(‘foo’, ‘Second expansion two.’)

⇒
foo

⇒Second expansion two.

undefine(‘foo’)

⇒
foo

⇒foo

It is possible to temporarily redefine a built-in with pushdef and defn.

7.7 Indirect call of macros

Any macro can be called indirectly with indir:

indir(name, ...)

which results in a call to the macro name, which is passed the rest of the arguments. This
can be used to call macros with “illegal” names (define allows such names to be defined):

define(‘$$internal$macro’, ‘Internal macro (name ‘$0’)’)

⇒
$$internal$macro

⇒$$internal$macro

indir(‘$$internal$macro’)

⇒Internal macro (name $$internal$macro)

The point is, here, that larger macro packages can have private macros defined, that will
not be called by accident. They can only be called through the built-in indir.

7.8 Indirect call of built-ins

Built-in macros can be called indirectly with built-in:

builtin(name, ...)

which results in a call to the built-in name, which is passed the rest of the arguments. This
can be used, if name has been given another definition that has covered the original.

15

8 Conditionals, loops and recursion

Macros, expanding to plain text, perhaps with arguments, are not quite enough. We would
like to have macros expand to different things, based on decisions taken at run-time. E.g.,
we need some kind of conditionals. Also, we would like to have some kind of loop construct,
so we could do something a number of times, or while some condition is true.

8.1 Testing macro definitions

There are two different built-in conditionals in m4. The first is ifdef:

ifdef(name, string-1, opt string-2)

which makes it possible to test whether a macro is defined or not. If name is defined as a
macro, ifdef expands to string-1, otherwise to string-2. If string-2 is omitted, it is taken
to be the empty string (according to the normal rules).

ifdef(‘foo’, ‘‘foo’ is defined’, ‘‘foo’ is not defined’)

⇒foo is not defined

define(‘foo’, ‘’)

⇒
ifdef(‘foo’, ‘‘foo’ is defined’, ‘‘foo’ is not defined’)

⇒foo is defined

8.2 Comparing strings

The other conditional, ifelse, is much more powerful. It can be used as a way to introduce
a long comment, as an if-else construct, or as a multibranch, depending on the number of
arguments supplied:

ifelse(comment)

ifelse(string-1, string-2, equal, opt not-equal)

ifelse(string-1, string-2, equal, ...)

Used with only one argument, the ifelse simply discards it and produces no output. This
is a common m4 idiom for introducing a block comment, as an alternative to repeatedly
using dnl. This special usage is recognized by GNU m4, so that in this case, the warning
about missing arguments is never triggered.

If called with three or four arguments, ifelse expands into equal, if string-1 and string-2
are equal (character for character), otherwise it expands to not-equal.

ifelse(foo, bar, ‘true’)

⇒
ifelse(foo, foo, ‘true’)

⇒true

ifelse(foo, bar, ‘true’, ‘false’)

⇒false

ifelse(foo, foo, ‘true’, ‘false’)

⇒true

However, ifelse can take more than four arguments. If given more than four arguments,
ifelse works like a case or switch statement in traditional programming languages. If

Chapter 8: Conditionals, loops and recursion 16

string-1 and string-2 are equal, ifelse expands into equal, otherwise the procedure is
repeated with the first three arguments discarded. This calls for an example:

ifelse(foo, bar, ‘third’, gnu, gnats, ‘sixth’, ‘seventh’)

⇒seventh

Naturally, the normal case will be slightly more advanced than these examples. A
common use of ifelse is in macros implementing loops of various kinds.

8.3 Loops and recursion

There is no direct support for loops in m4, but macros can be recursive. There is no limit on
the number of recursion levels, other than those enforced by your hardware and operating
system.

Loops can be programmed using recursion and the conditionals described previously.

There is a built-in macro, shift, which can, among other things, be used for iterating
through the actual arguments to a macro:

shift(...)

It takes any number of arguments, and expands to all but the first argument, separated by
commas, with each argument quoted.

shift(bar)

⇒
shift(foo, bar, baz)

⇒bar,baz

An example of the use of shift is this macro, which reverses the order of its arguments:

define(‘reverse’, ‘ifelse($#, 0, , $#, 1, ‘‘$1’’,

‘reverse(shift($@)), ‘$1’’)’)

⇒
reverse

⇒
reverse(foo)

⇒foo

reverse(foo, bar, gnats,and gnus)

⇒and gnus, gnats, bar, foo

While not a very interesting macro, it does show how simple loops can be made with
shift, ifelse and recursion.

Here is an example of a loop macro that implements a simple forloop. It can, for example,
be used for simple counting:

forloop(‘i’, 1, 8, ‘i ’)

⇒1 2 3 4 5 6 7 8

The arguments are a name for the iteration variable, the starting value, the final value,
and the text to be expanded for each iteration. With this macro, the macro i is defined
only within the loop. After the loop, it retains whatever value it might have had before.

For-loops can be nested, like

forloop(‘i’, 1, 4, ‘forloop(‘j’, 1, 8, ‘(i, j) ’)

’)

Chapter 8: Conditionals, loops and recursion 17

⇒(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8)

⇒(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8)

⇒(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8)

⇒(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) (4, 8)

⇒
The implementation of the forloop macro is fairly straightforward. The forloop macro

itself is simply a wrapper, which saves the previous definition of the first argument, calls
the internal macro _forloop, and re-establishes the saved definition of the first argument.

The macro _forloop expands the fourth argument once, and tests to see if it is finished.
If it has not finished, it increments the iteration variable (using the predefined macro incr

(see Section 14.1 [Incr], page 33, for details)), and recurses.

Here is the actual implementation of forloop:

define(‘forloop’,

‘pushdef(‘$1’, ‘$2’)_forloop(‘$1’, ‘$2’, ‘$3’, ‘$4’)popdef(‘$1’)’)

define(‘_forloop’,

‘$4‘’ifelse($1, ‘$3’, ,

‘define(‘$1’, incr($1))_forloop(‘$1’, ‘$2’, ‘$3’, ‘$4’)’)’)

Notice the careful use of quotes. Only three macro arguments are unquoted, each for
its own reason. Try to find out why these three arguments are left unquoted, and see what
happens if they are quoted.

Now, even though these two macros are useful, they are still not robust enough for
general use. They lack even basic error handling of cases like start value less than final
value, and the first argument not being a name. Correcting these errors are left as an
exercise to the reader.

18

9 How to debug macros and input

When writing macros for m4, most of the time they won’t work as intended (as is the case
with most programming languages). There is a little support for macro debugging in m4.

9.1 Displaying macro definitions

If you want to see what a name expands into, you can use the built-in dumpdef:

dumpdef(...)

which accepts any number of arguments. If called without any arguments, it displays the
definitions of all known names, otherwise it displays the definitions of the names given. The
output is printed directly on the standard error output.

The expansion of dumpdef is void.

define(‘foo’, ‘Hello world.’)

⇒
dumpdef(‘foo’)

error foo: ‘Hello world.’

⇒
dumpdef(‘define’)

error define: <define>

⇒
The last example shows how built-in macros definitions are displayed.

See Section 9.3 [Debug Levels], page 19, for information on controlling the details of the
display.

9.2 Tracing macro calls

It is possible to trace macro calls and expansions through the built-ins traceon and
traceoff:

traceon(...)

traceoff(...)

When called without any arguments, traceon and traceoff will turn tracing on and off,
respectively, for all defined macros. When called with arguments, only the named macros
are affected.

The expansion of traceon and traceoff is void.

Whenever a traced macro is called and the arguments have been collected, the call is
displayed. If the expansion of the macro call is not void, the expansion can be displayed
after the call. The output is printed directly on the standard error output.

define(‘foo’, ‘Hello World.’)

⇒
define(‘echo’, ‘$@’)

⇒
traceon(‘foo’, ‘echo’)

⇒
foo

Chapter 9: How to debug macros and input 19

error m4trace: -1- foo -> ‘Hello World.’

⇒Hello World.

echo(gnus, and gnats)

error m4trace: -1- echo(‘gnus’, ‘and gnats’) -> ‘‘gnus’,‘and gnats’’

⇒gnus,and gnats

The number between dashes is the depth of the expansion. It is one most of the time,
signifying an expansion at the outermost level, but it increases when macro arguments
contain unquoted macro calls.

See Section 9.3 [Debug Levels], page 19, for information on controlling the details of the
display.

9.3 Controlling debugging output

The ‘-d’ option to m4 controls the amount of details presented, when using the macros
described in the preceding sections.

The flags following the option can be one or more of the following:

t Trace all macro calls made in this invocation of m4.

a Show the actual arguments in each macro call. This applies to all macro calls
if the ‘t’ flag is used, otherwise only the macros covered by calls of traceon.

e Show the expansion of each macro call, if it is not void. This applies to all
macro calls if the ‘t’ flag is used, otherwise only the macros covered by calls of
traceon.

q Quote actual arguments and macro expansions in the display with the current
quotes.

c Show several trace lines for each macro call. A line is shown when the macro is
seen, but before the arguments are collected; a second line when the arguments
have been collected and a third line after the call has completed.

x Add a unique ‘macro call id’ to each line of the trace output. This is useful in
connection with the ‘c’ flag above.

f Show the name of the current input file in each trace output line.

l Show the the current input line number in each trace output line.

p Print a message when a named file is found through the path search mecanism
(see Section 11.2 [Search Path], page 25), giving the actual filename used.

i Print a message each time the current input file is changed, giving file name
and input line number.

V A shorthand for all of the above flags.

If no flags are specified with the ‘-d’ option, the default is ‘aeq’. The examples in the
previous two sections assumed the default flags.

There is a built-in macro debugmode, which allows on-the-fly control of the debugging
output format:

debugmode(opt flags)

Chapter 9: How to debug macros and input 20

The argument flags should be a subset of the letters listed above. As special cases, if the
argument starts with a ‘+’, the flags are added to the current debug flags, and if it starts
with a ‘-’, they are removed. If no argument is present, the debugging flags are set to zero
(as if no ‘-d’ was given), and with an empty argument the flags are reset to the default.

9.4 Saving debugging output

Debug and tracing output can be redirected to files using either the ‘-o’ option to m4, or
with the built-in macro debugfile:

debugfile(opt filename)

will send all further debug and trace output to filename. If filename is empty, debug and
trace output are discarded and if debugfile is called without any arguments, debug and
trace output are sent to the standard error output.

21

10 Input control

This chapter describes various built-in macros for controlling the input to m4.

10.1 Deleting whitespace in input

The built-in dnl reads and discards all characters, up to and including the first newline:

dnl

and it is often used in connection with define, to remove the newline that follow the call
to define. Thus

define(‘foo’, ‘Macro ‘foo’.’)dnl A very simple macro, indeed.

foo

⇒Macro foo.

The input up to and including the next newline is discarded, as opposed to the way
comments are treated (see Section 5.4 [Comments], page 7).

Usually, dnl is immediately followed by an end of line or some other whitespace. GNU
m4 will produce a warning diagnostic if dnl is followed by an open parenthesis. In this
case, dnl will collect and process all arguments, looking for a matching close parenthesis.
All predictable side effects resulting from this collection will take place. dnl will return no
output. The input following the matching close parenthesis up to and including the next
newline, on whatever line containing it, will still be discarded.

10.2 Changing the quote characters

The default quote delimiters can be changed with the built-in changequote:

changequote(opt start, opt end)

where start is the new start-quote delimiter and end is the new end-quote delimiter. If
any of the arguments are missing, the default quotes (‘ and ’) are used instead of the void
arguments.

The expansion of changequote is void.

changequote([,])

⇒
define([foo], [Macro [foo].])

⇒
foo

⇒Macro foo.

If no single character is appropriate, start and end can be of any length.

changequote([[,]])

⇒
define([[foo]], [[Macro [[[foo]]].]])

⇒
foo

⇒Macro [foo].

Chapter 10: Input control 22

Changing the quotes to the empty strings will effectively disable the quoting mechanism,
leaving no way to quote text.

define(‘foo’, ‘Macro ‘FOO’.’)

⇒
changequote(,)

⇒
foo

⇒Macro ‘FOO’.

‘foo’

⇒‘Macro ‘FOO’.’

There is no way in m4 to quote a string containing an unmatched left quote, except using
changequote to change the current quotes.

Neither quote string should start with a letter or ‘_’ (underscore), as they will be confused
with names in the input. Doing so disables the quoting mechanism.

10.3 Changing comment delimiters

The default comment delimiters can be changed with the built-in macro changecom:

changecom(opt start, opt end)

where start is the new start-comment delimiter and end is the new end-comment delimiter.
If any of the arguments are void, the default comment delimiters (# and newline) are used
instead of the void arguments. The comment delimiters can be of any length.

The expansion of changecom is void.

define(‘comment’, ‘COMMENT’)

⇒
A normal comment

⇒# A normal comment

changecom(‘/*’, ‘*/’)

⇒
Not a comment anymore

⇒# Not a COMMENT anymore

But: /* this is a comment now */ while this is not a comment

⇒But: /* this is a comment now */ while this is not a COMMENT

Note how comments are copied to the output, much as it they were quoted strings. If
you want the text inside a comment expanded, quote the start comment delimiter.

Calling changecom without any arguments disables the commenting mechanism com-
pletely.

define(‘comment’, ‘COMMENT’)

⇒
changecom

⇒
Not a comment anymore

⇒# Not a COMMENT anymore

Chapter 10: Input control 23

10.4 Saving input

It is possible to ‘save’ some text until the end of the normal input has been seen. Text can
be saved, to be read again by m4 when the normal input has been exhausted. This feature is
normally used to initiate cleanup actions before normal exit, e.g., deleting temporary files.

To save input text, use the built-in m4wrap:

m4wrap(string, ...)

which stores string and the rest of the arguments in a safe place, to be reread when end of
input is reached.

define(‘cleanup’, ‘This is the ‘cleanup’ actions.

’)

⇒
m4wrap(‘cleanup’)

⇒
This is the first and last normal input line.

⇒This is the first and last normal input line.

^D

⇒This is the cleanup actions.

The saved input is only reread when the end of normal input is seen, and not if m4exit
is used to exit m4.

It is safe to call m4wrap from saved text, but then the order in which the saved text is
reread is undefined. If m4wrap is not used recursively, the saved pieces of text are reread in
the opposite order in which they were saved (LIFO—last in, first out).

24

11 File inclusion

m4 allows you to include named files at any point in the input.

11.1 Including named files

There are two built-in macros in m4 for including files:

include(filename)

sinclude(filename)

both of which cause the file named filename to be read by m4. When the end of the file is
reached, input is resumed from the previous input file.

The expansion of include and sinclude is therefore the contents of filename.

It is an error for an included file not to exist. If you don’t want error messages about
non-existent files, sinclude can be used to include a file, if it exists, expanding to nothing
if it does not.

include(‘no-such-file’)

⇒
error m4:30.include:2: can’t open no-such-file: No such file or directory

sinclude(‘no-such-file’)

⇒
Assume in the following that the file incl.m4 contains the lines:

Include file start

foo

Include file end

Normally file inclusion is used to insert the contents of a file into the input stream. The
contents of the file will be read by m4 and macro calls in the file will be expanded:

define(‘foo’, ‘FOO’)

⇒
include(‘incl.m4’)

⇒Include file start

⇒FOO

⇒Include file end

⇒
The fact that include and sinclude expand to the contents of the file can be used to

define macros that operate on entire files. Here is an example, which defines ‘bar’ to expand
to the contents of incl.m4:

define(‘bar’, include(‘incl.m4’))

⇒
This is ‘bar’: >>>bar<<<

⇒This is bar: >>>Include file start

⇒foo

⇒Include file end

⇒<<<

This use of include is not trivial, though, as files can contain quotes, commas and
parentheses, which can interfere with the way the m4 parser works.

Chapter 11: File inclusion 25

11.2 Searching for include files

GNU m4 allows included files to be found in other directories than the current working
directory.

If a file is not found in the current working directory, and the file name is not absolute,
the file will be looked for in a specified search path. First, the directories specified with the
‘-I’ option will be searched, in the order found on the command line. Second, if the ‘M4PATH’
environment variable is set, it is expected to contain a colon-separated list of directories,
which will be searched in order.

If the automatic search for include-files causes trouble, the ‘p’ debug flag (see Section 9.3
[Debug Levels], page 19) can help isolate the problem.

26

12 Diverting and undiverting output

Diversions are a way of temporarily saving output. The output of m4 can at any time be
diverted to a temporary file, and be reinserted into the output stream, undiverted, again at
a later time.

Up to ten numbered diversions (numbered from 0 to 9) are supported in m4, of which
diversion number 0 is the normal output stream. The number of available diversions can
be increased with the ‘-N’ option.

12.1 Diverting output

Output is diverted using divert:

divert(opt number)

where number is the diversion to be used. If number is left out, it is assumed to be zero.

The expansion of divert is void.

Diverted output, that hasn’t been explicitly undiverted, will be undiverted when all the
input has been processed.

divert(1)

This text is diverted.

divert

⇒
This text is not diverted.

⇒This text is not diverted.

^D

⇒
⇒This text is diverted.

Several calls of divert with the same argument do not overwrite the previous diverted
text, but append to it.

If output is diverted to an non-existent diversion, it is simply discarded. This can be
used to suppress unwanted output. A common example of unwanted output is the trailing
newlines after macro definitions. Here is how to avoid them.

divert(-1)

define(‘foo’, ‘Macro ‘foo’.’)

define(‘bar’, ‘Macro ‘bar’.’)

divert

⇒
This is a common programming idiom in m4.

12.2 Undiverting output

Diverted text can be undiverted explicitly using the built-in undivert:

undivert(opt number, ...)

which undiverts the diversions given by the arguments, in the order given. If no arguments
are supplied, all diversions are undiverted, in numerical order.

Chapter 12: Diverting and undiverting output 27

The expansion of undivert is void.

divert(1)

This text is diverted.

divert

⇒
This text is not diverted.

⇒This text is not diverted.

undivert(1)

⇒
⇒This text is diverted.

⇒

Notice the last two blank lines. One of them comes from the newline following undivert,
the other from the newline that followed the divert! A diversion often starts with a blank
line like this.

When diverted text is undiverted, it is not reread by m4, but rather copied directly to
the current output, and it is therefore not an error to undivert into a diversion.

When a diversion has been undiverted, the diverted text is discarded, and it is not
possible to bring back diverted text more than once.

divert(1)

This text is diverted first.

divert(0)undivert(1)dnl

⇒
⇒This text is diverted first.

undivert(1)

⇒
divert(1)

This text is also diverted but not appended.

divert(0)undivert(1)dnl

⇒
⇒This text is also diverted but not appended.

Attempts to undivert the current diversion are silently ignored.

GNU m4 allows named files to be undiverted. Given a non-numeric argument, the con-
tents of the file named will be copied, uninterpreted, to the current output. This comple-
ments the built-in include (see Section 11.1 [Include], page 24). To illustrate the difference,
assume the file foo contains the word ‘bar’:

define(‘bar’, ‘BAR’)

⇒
undivert(‘foo’)

⇒bar

⇒
include(‘foo’)

⇒BAR

⇒

Chapter 12: Diverting and undiverting output 28

12.3 Diversion numbers

The built-in divnum:

divnum

expands to the number of the current diversion.

Initial divnum

⇒Initial 0

divert(1)

Diversion one: divnum

divert(2)

Diversion two: divnum

divert

⇒
^D

⇒
⇒Diversion one: 1

⇒
⇒Diversion two: 2

The last call of divert without argument is necessary, since the undiverted text would
otherwise be diverted itself.

12.4 Discarding diverted text

Often it is not known, when output is diverted, whether the diverted text is actually needed.
Since all non-empty diversion are brought back when the end of input is seen, a method of
discarding a diversion is needed. If all diversions should be discarded, the easiest is to end
the input to m4 with ‘divert(-1)’:

divert(1)

Diversion one: divnum

divert(2)

Diversion two: divnum

divert(-1)

^D

No output is produced at all.

Clearing selected diversions can be done with the following macro:

define(‘cleardivert’,

‘pushdef(‘_num’, divnum)divert(-1)undivert($@)divert(_num)popdef(‘_num’)’)

⇒
It is called just like undivert, but the effect is to clear the diversions, given by the

arguments. (This macro has a nasty bug! You should try to see if you can find it and
correct it.)

29

13 Macros for text handling

There are a number of built-ins in m4 for manipulating text in various ways, extracting
substrings, searching, substituting, and so on.

13.1 Calculating length of strings

The length of a string can be calculated by len:

len(string)

which expands to the length of string, as a decimal number.

len()

⇒0

len(‘abcdef’)

⇒6

13.2 Searching for substrings

Searching for substrings is done with index:

index(string, substring)

which expands to the index of the first occurrence of substring in string. The first character
in string has index 0. If substring does not occur in string, index expands to ‘-1’.

index(‘gnus, gnats, and armadillos’, ‘nat’)

⇒7

index(‘gnus, gnats, and armadillos’, ‘dag’)

⇒-1

13.3 Searching for regular expressions

Searching for regular expressions is done with the built-in regexp:

regexp(string, regexp, opt replacement)

which searches for regexp in string. The syntax for regular expressions is the same as in
GNU Emacs. See Section “Syntax of Regular Expressions” in The GNU Emacs Manual.

If replacement is omitted, regexp expands to the index of the first match of regexp in
string. If regexp does not match anywhere in string, it expands to -1.

regexp(‘GNUs not Unix’, ‘\<[a-z]\w+’)

⇒5

regexp(‘GNUs not Unix’, ‘\<Q\w*’)

⇒-1

If replacement is supplied, regexp changes the expansion to this argument, with ‘\&’
substituted by string, and ‘\n’ substituted by the text matched by the nth parenthesized
sub-expression of regexp, ‘\0’ being the text the entire regular expression matched.

regexp(‘GNUs not Unix’, ‘\w\(\w+\)$’, ‘*** \0 *** \1 ***’)

⇒*** Unix *** nix ***

Chapter 13: Macros for text handling 30

13.4 Extracting substrings

Substrings are extracted with substr:

substr(string, from, opt length)

which expands to the substring of string, which starts at index from, and extends for length
characters, or to the end of string, if length is omitted. The starting index of a string is
always 0.

substr(‘gnus, gnats, and armadillos’, 6)

⇒gnats, and armadillos

substr(‘gnus, gnats, and armadillos’, 6, 5)

⇒gnats

13.5 Translating characters

Character translation is done with translit:

translit(string, chars, replacement)

which expands to string, with each character that occurs in chars translated into the char-
acter from replacement with the same index.

If replacement is shorter than chars, the excess characters are deleted from the expansion.
If replacement is omitted, all characters in string, that are present in chars are deleted from
the expansion.

Both chars and replacement can contain character-ranges, e.g., ‘a-z’ (meaning all low-
ercase letters) or ‘0-9’ (meaning all digits). To include a dash ‘-’ in chars or replacement,
place it first or last.

It is not an error for the last character in the range to be ‘larger’ than the first. In that
case, the range runs backwards, i.e., ‘9-0’ means the string ‘9876543210’.

translit(‘GNUs not Unix’, ‘A-Z’)

⇒s not nix

translit(‘GNUs not Unix’, ‘a-z’, ‘A-Z’)

⇒GNUS NOT UNIX

translit(‘GNUs not Unix’, ‘A-Z’, ‘z-a’)

⇒tmfs not fnix

The first example deletes all uppercase letters, the second converts lowercase to upper-
case, and the third ‘mirrors’ all uppercase letters, while converting them to lowercase. The
two first cases are by far the most common.

13.6 Substituting text by regular expression

Global substitution in a string is done by patsubst:

patsubst(string, regexp, opt replacement)

which searches string for matches of regexp, and substitutes replacement for each match.
The syntax for regular expressions is the same as in GNU Emacs.

The parts of string that are not covered by any match of regexp are copied to the
expansion. Whenever a match is found, the search proceeds from the end of the match, so

Chapter 13: Macros for text handling 31

a character from string will never be substituted twice. If regexp matches a string of zero
length, the start position for the search is incremented, to avoid infinite loops.

When a replacement is to be made, replacement is inserted into the expansion, with ‘\&’
substituted by string, and ‘\n’ substituted by the text matched by the nth parenthesized
sub-expression of regexp, ‘\0’ being the text the entire regular expression matched.

The replacement argument can be omitted, in which case the text matched by regexp is
deleted.

patsubst(‘GNUs not Unix’, ‘^’, ‘OBS: ’)

⇒OBS: GNUs not Unix

patsubst(‘GNUs not Unix’, ‘\<’, ‘OBS: ’)

⇒OBS: GNUs OBS: not OBS: Unix

patsubst(‘GNUs not Unix’, ‘\w*’, ‘(\0)’)

⇒(GNUs)() (not)() (Unix)

patsubst(‘GNUs not Unix’, ‘\w+’, ‘(\0)’)

⇒(GNUs) (not) (Unix)

patsubst(‘GNUs not Unix’, ‘[A-Z][a-z]+’)

⇒GN not

Here is a slightly more realistic example, which capitalizes individual word or whole
sentences, by substituting calls of the macros upcase and downcase into the strings.

define(‘upcase’, ‘translit(‘$*’, ‘a-z’, ‘A-Z’)’)dnl

define(‘downcase’, ‘translit(‘$*’, ‘A-Z’, ‘a-z’)’)dnl

define(‘capitalize1’,

‘regexp(‘$1’, ‘^\(\w\)\(\w*\)’, ‘upcase(‘\1’)‘’downcase(‘\2’)’)’)dnl

define(‘capitalize’,

‘patsubst(‘$1’, ‘\w+’, ‘capitalize1(‘\0’)’)’)dnl

capitalize(‘GNUs not Unix’)

⇒Gnus Not Unix

13.7 Formatted output

Formatted output can be made with format:

format(format-string, ...)

which works much like the C function printf. The first argument is a format string, which
can contain ‘%’ specifications, and the expansion of format is the formatted string.

Its use is best described by a few examples:

define(‘foo’, ‘The brown fox jumped over the lazy dog’)

⇒
format(‘The string "%s" is %d characters long’, foo, len(foo))

⇒The string "The brown fox jumped over the lazy dog" is 38 characters long

Using the forloop macro defined in See Section 8.3 [Loops], page 16, this example shows
how format can be used to produce tabular output.

forloop(‘i’, 1, 10, ‘format(‘%6d squared is %10d

’, i, eval(i^2))’)

⇒ 1 squared is 1

⇒ 2 squared is 4

Chapter 13: Macros for text handling 32

⇒ 3 squared is 9

⇒ 4 squared is 16

⇒ 5 squared is 25

⇒ 6 squared is 36

⇒ 7 squared is 49

⇒ 8 squared is 64

⇒ 9 squared is 81

⇒ 10 squared is 100

The built-in format is modeled after the ANSI C ‘printf’ function, and supports the
normal ‘%’ specifiers: ‘c’, ‘s’, ‘d’, ‘o’, ‘x’, ‘X’, ‘u’, ‘e’, ‘E’ and ‘f’; it supports field widths
and precisions, and the modifiers ‘+’, ‘-’, ‘ ’, ‘0’, ‘#’, ‘h’ and ‘l’. For more details on the
functioning of printf, see the C Library Manual.

33

14 Macros for doing arithmetic

Integer arithmetic is included in m4, with a C-like syntax. As convenient shorthands, there
are built-ins for simple increment and decrement operations.

14.1 Decrement and increment operators

Increment and decrement of integers are supported using the built-ins incr and decr:

incr(number)

decr(number)

which expand to the numerical value of number, incremented, or decremented, respectively,
by one.

incr(4)

⇒5

decr(7)

⇒6

14.2 Evaluating integer expressions

Integer expressions are evaluated with eval:

eval(expression, opt radix, opt width)

which expands to the value of expression.

Expressions can contain the following operators, listed in order of decreasing precedence.

- Unany minus

** ^ Exponentiation

* / % Multiplication, division and modulo

+ - Addition and subtraction

== != > >= < <=

Relational operators

! Logical negation

& Bitwise and

| Bitwise or

&& Logical and

|| Logical or

All operators, except exponentiation, are left associative.

Numbers can be given in decimal, octal (starting with 0), or hexadecimal (starting with
0x).

Parentheses may be used to group subexpressions whenever needed. For the relational
operators, a true relation returns 1, and a false relation return 0.

Here are a few examples of use of eval.

eval(-3 * 5)

Chapter 14: Macros for doing arithmetic 34

⇒-15

eval(index(‘Hello world’, ‘llo’) >= 0)

⇒1

define(‘square’, ‘eval(($1)^2)’)

⇒
square(9)

⇒81

square(square(5)+1)

⇒676

define(‘foo’, ‘666’)

⇒
eval(‘foo’/6)

error m4:51.eval:14: bad expression in eval: foo/6

⇒
eval(foo/6)

⇒111

As the second to last example shows, eval does not handle macro names, even if they
expand to a valid expression (or part of a valid expression). Therefore all macros must be
expanded before they are passed to eval.

If radix is specified, it specifies the radix to be used in the expansion. The default
radix is 10. The result of eval is always taken to be signed. The width argument specifies a
minimum output width. The result is zero-padded to extend the expansion to the requested
width.

eval(666, 10)

⇒666

eval(666, 11)

⇒556

eval(666, 6)

⇒3030

eval(666, 6, 10)

⇒0000003030

eval(-666, 6, 10)

⇒-000003030

Please take note that radix cannot be larger than 36 in the current implemention. Which
characters can be used as digits, if the radix is larger than 36? Currently any radix larger
than 36 are rejected.

35

15 Running Unix commands

There are a few built-in macros in m4 that allow you to run Unix commands from within
m4.

15.1 Executing simple commands

Any shell command can be executed, using syscmd:

syscmd(shell-command)

which executes shell-command as a shell command.

The expansion of syscmd is void.

The expansion is not the output from the command! Instead the standard input, output
and error of the command are the same as those of m4. This means that output or error
messages from the commands are not read by m4, and might get mixed up with the normal
output from m4. This can produce unexpected results. It is therefore a good habit to always
redirect the input and output of shell commands used with syscmd.

15.2 Reading the output of commands

If you want m4 to read the output of a Unix command, use esyscmd:

esyscmd(shell-command)

which expands to the standard output of the shell command shell-command.

The error output of shell-command is not a part of the expansion. It will appear along
with the error output of m4. Assume you are positioned into the checks directory of GNU
m4 distribution, then:

define(‘vice’, ‘esyscmd(grep Vice COPYING)’)

⇒
vice

⇒ Ty Coon, President of Vice

⇒
Note how the expansion of esyscmd has a trailing newline.

15.3 Exit codes

To see whether a shell command succeeded, use sysval:

sysval

which expands to the exit status of the last shell command run with syscmd or esyscmd.

syscmd(‘false’)

⇒
ifelse(sysval, 0, zero, non-zero)

⇒non-zero

syscmd(‘true’)

⇒
sysval

⇒0

Chapter 15: Running Unix commands 36

15.4 Making names for temporary files

Commands specified to syscmd or esyscmd might need a temporary file, for output or for
some other purpose. There is a built-in macro, maketemp, for making temporary file names:

maketemp(template)

which expands to a name of a non-existent file, made from the string template, which should
end with the string ‘XXXXXX’. The six X’s are then replaced, usually with something that
includes the process id of the m4 process, in order to make the filename unique.

maketemp(‘/tmp/fooXXXXXX’)

⇒/tmp/fooa07346

maketemp(‘/tmp/fooXXXXXX’)

⇒/tmp/fooa07346

As seen in the example, several calls of maketemp might expand to the same string, since
the selection criteria is whether the file exists or not. If a file has not been created before
the next call, the two macro calls might expand to the same name.

37

16 Miscellaneous built-in macros

This chapter describes various built-ins, that don’t really belong in any of the previous
chapters.

16.1 Printing error messages

You can print error messages using errprint:

errprint(message, ...)

which simply prints message and the rest of the arguments on the standard error output.

The expansion of errprint is void.

errprint(‘Illegal arguments to forloop

’)

error Illegal arguments to forloop

⇒
A trailing newline is not printed automatically, so it must be supplied as part of the

argument, as in the example.

To make it possible to specify the location of the error, two utility built-ins exist:

__file__

__line__

which expands to the quoted name of the current input file, and the current input line
number in that file.

errprint(‘m4:’__file__:__line__: ‘Input error

’)

error m4:56.errprint:2: Input error

⇒

16.2 Exiting from m4

If you need to exit from m4 before the entire input has been read, you can use m4exit:

m4exit(opt code)

which causes m4 to exit, with exit code code. If code is left out, the exit code is zero.

define(‘fatal_error’, ‘errprint(‘m4: ’__file__: __line__‘: fatal error: $*

’)m4exit(1)’)

⇒
fatal_error(‘This is a BAD one, buster’)

error m4: 57.m4exit: 5: fatal error: This is a BAD one, buster

After this macro call, m4 will exit with exit code 1. This macro is only intended for error
exits, since the normal exit procedures are not followed, e.g., diverted text is not undiverted,
and saved text (see Section 10.4 [M4wrap], page 23) is not reread.

38

17 Compatibility with other versions of m4

This chapter describes the differences between this implementation of m4, and the imple-
mentation found under Unix, notably System V, Release 3.

17.1 Extensions in GNU m4

This version of m4 contains a few facilities, that do not exist in System V m4. These extra
facilities are all suppressed by using the ‘-G’ command line option, unless overridden by
other command line options.

• In the $n notation for macro arguments, n can contain several digits, while the System
V m4 only accepts one digit. This allows macros in GNU m4 to take any number of
arguments, and not only nine (see Section 7.2 [Arguments], page 10).

• Files included with include and sinclude are sought in a user specified search path,
if they are not found in the working directory. The search path is specified by the ‘-I’
option and the ‘M4PATH’ environment variable (see Section 11.2 [Search Path], page 25).

• Arguments to undivert can be non-numeric, in which case the named file will be
included uninterpreted in the output (see Section 12.2 [Undivert], page 26).

• Formatted output is supported through the format built-in, which is modeled after the
C library function printf (see Section 13.7 [Format], page 31).

• Searches and text substitution through regular expressions are supported by the regexp
and patsubst built-ins (see Section 13.3 [Regexp], page 29, and See Section 13.6 [Pat-
subst], page 30).

• The output of shell commands can be read into m4 with esyscmd (see Section 15.2
[Esyscmd], page 35).

• There is indirect access to any built-in macro with builtin (see Section 7.8 [Builtin],
page 14).

• Macros can be called indirectly through indir (see Section 7.7 [Indir], page 14).

• The name of the current input file and the current input line number are accessible
through the built-ins __file__ and __line__ (see Section 16.1 [Errprint], page 37).

• The format of the output from dumpdef and macro tracing can be controlled with
debugmode (see Section 9.3 [Debug Levels], page 19).

• The destination of trace and debug output can be controlled with debugfile (see
Section 9.4 [Debug Output], page 20).

In addition to the above extensions, GNU m4 implements the following command line
options: ‘-V’, ‘-d’, ‘-l’, ‘-o’, ‘-N’, ‘-I’ and ‘-t’. For a description of these options, see
Chapter 4 [Invoking m4], page 4,

Also, the debugging and tracing facilities in GNU m4 are much more extensive than in
most other versions of m4.

17.2 Facilities in System V m4 not in GNU m4

The version of m4 from System V contains a few facilities that have not been implemented
in GNU m4 yet.

Chapter 17: Compatibility with other versions of m4 39

• System V m4 supports multiple arguments to defn. This is not implemented in GNU
m4. Its usefulness is unclear to me.

17.3 Other incompatibilities

There are a few other incompatibilities between this implementation of m4, and the System
V version.

• GNU m4 implements sync lines differently from System V m4, when text is being di-
verted. GNU m4 outputs the sync lines when the text is being diverted, and System V
m4 when the diverted text is being brought back.

The problem is which lines and filenames should be attached to text that is being, or
has been, diverted. System V m4 regards all the diverted text as being generated by the
source line containing the undivert call, whereas GNU m4 regards the diverted text as
being generated at the time it is diverted.

Which is right? I expect the sync line option to be used mostly when using m4 as a
front end to a compiler. If a diverted line causes a compiler error, I believe that the
error messages should refer to the place where the diversion were made, and not where
it was inserted again. Comments anyone?

Anyway, GNU m4’s approach causes a serious bug, if calls to undivert aren’t alone on
the input line. See the file examples/divert.m4 for a demonstration of the bug. I
don’t feel it is acceptable to insert newlines in the output the user hasn’t asked for.

• GNU m4 without ‘-G’ option will define the macro __gnu__ to expand to the empty
string.

On Unix systems, GNU m4 without the ‘-G’ option will define the macro __unix__,
otherwise the macro unix. Both will expand to the empty string.

40

Concept index

A
Arguments to macros . 8, 10
Arguments to macros, special 11
Arguments, quoted macro . 8
Arithmetic . 33

B
Builtins, indirect call of . 14

C
Call of built-ins, indirect . 14
Call of macros, indirect . 14
Changing comment delimiters 22
Changing the quote delimiters 21
Characters, translating . 30
Command line, filenames on the 5
Command line, macro definitions on the 5
Command line, options . 4
Commands, exit code from Unix 35
Commands, running Unix . 35
Comment delimiters, changing 22
Comments . 7
Comments, copied to output 22
Comparing strings . 15
Compatibility . 38
Conditionals . 15
Controlling debugging output 19
Counting loops . 16

D
Debugging output, controlling 19
Debugging output, saving . 20
Decrement operator . 33
Defining new macros . 10
Definitions, displaying macro 18
Deleting macros . 12
Deleting whitespace in input 21
Discarding diverted text . 28
Displaying macro definitions 18
Diversion numbers . 28
Diverted text, discarding . 28
Diverting output to files . 26

E
Error messages, printing . 37
Evaluation, of integer expressions 33
Executing Unix commands . 35
Exit code from Unix commands 35
Exiting from m4 . 37
Expansion of macros . 9
Expansion, tracing macro . 18
Expressions, evaluation of integer 33
Extracting substrings . 30

F
File inclusion . 24, 27
Filenames, on the command line 5
Files, diverting output to . 26
Files, names of temporary . 36
Forloops . 16
Formatted output . 31

G
GNU extensions . . 10, 14, 19, 20, 25, 27, 29, 30, 31,

35, 38

I
Included files, search path for 25
Inclusion, of files . 24, 27
Increment operator . 33
Indirect call of built-ins . 14
Indirect call of macros . 14
Input tokens . 7
Input, saving . 23
Integer arithmetic . 33
Integer expression evaluation 33

L
Length of strings . 29
Loops . 16
Loops, counting . 16

Concept index 41

M
Macro definitions, on the command line 5
Macro expansion, tracing . 18
Macro invocation . 8
Macros, arguments to . 8, 10
Macros, displaying definitions 18
Macros, expansion of . 9
Macros, how to define new . 10
Macros, how to delete . 12
Macros, how to rename . 12
Macros, indirect call of . 14
Macros, quoted arguments to . 8
Macros, recursive . 16
Macros, special arguments to 11
Macros, temporary redefinition of 13
Messages, printing error . 37
Multibranches . 15

N
Names . 7

O
Options, command line . 4
Output, diverting to files . 26
Output, formatted . 31
Output, saving debugging . 20

P
Pattern substitution . 30
Printing error messages . 37

Q
Quote delimiters, changing the 21
Quoted macro arguments . 8
Quoted string . 7

R
Recursive macros . 16
Redefinition of macros, temporary 13
Regular expressions . 29, 30
Renaming macros . 12
Running Unix commands . 35

S
Saving debugging output . 20
Saving input . 23
Search path for included files 25
Special arguments to macros 11
Strings, length of . 29
Substitution by regular expression 30
Substrings, extracting . 30

T
Temporary filenames . 36
Temporary redefinition of macros 13
Tokens . 7
Tracing macro expansion . 18
Translating characters . 30

U
Undefining macros . 12
Unix commands, exit code from 35
Unix commands, running . 35

42

Macro index

References are exclusively to the places where a built-in is introduced the first time. Names
starting and ending with ‘__’ have these characters removed in the index.

B
builtin . 14

C
changecom . 22
changequote . 21

D
debugfile . 20
debugmode . 19
decr . 33
define . 10
defn . 12
divert . 26
divnum . 28
dnl . 21
dumpdef . 18

E
errprint . 37
esyscmd . 35
eval . 33

F
file . 37
format . 31

G
gnu . 39

I
ifdef . 15
ifelse . 15
include . 24
incr . 33
index . 29
indir . 14

L
len . 29
line . 37

M
m4exit . 37
m4wrap . 23
maketemp . 36

P
patsubst . 30
popdef . 13
pushdef . 13

R
regexp . 29

S
shift . 16
sinclude . 24
substr . 30
syscmd . 35
sysval . 35

T
traceoff . 18
traceon . 18
translit . 30

U
undefine . 12
undivert . 26
unix . 39

i

Short Contents

1 Introduction to m4 . 1
2 Using this manual . 2

3 Problems and bugs . 3
4 Invoking m4 . 4
5 Lexical and syntactic conventions . 7
6 How to invoke macros . 8
7 How to define new macros . 10

8 Conditionals, loops and recursion . 15
9 How to debug macros and input . 18

10 Input control . 21
11 File inclusion . 24

12 Diverting and undiverting output . 26
13 Macros for text handling . 29
14 Macros for doing arithmetic . 33

15 Running Unix commands . 35
16 Miscellaneous built-in macros . 37
17 Compatibility with other versions of m4 38
Concept index . 40

Macro index . 42

ii

Table of Contents

1 Introduction to m4 . 1

2 Using this manual . 2

3 Problems and bugs . 3

4 Invoking m4 . 4

5 Lexical and syntactic conventions 7
5.1 Names . 7
5.2 Quoted strings . 7
5.3 Other tokens . 7
5.4 Comments . 7

6 How to invoke macros . 8
6.1 Macro invocation . 8
6.2 Macro arguments . 8
6.3 Quoting macro arguments . 8
6.4 Macro expansion . 9

7 How to define new macros . 10
7.1 Defining a macro . 10
7.2 Arguments to macros . 10
7.3 Special arguments to macros . 11
7.4 Deleting a macro . 12
7.5 Renaming macros . 12
7.6 Temporarily redefining macros . 13
7.7 Indirect call of macros . 14
7.8 Indirect call of built-ins . 14

8 Conditionals, loops and recursion 15
8.1 Testing macro definitions . 15
8.2 Comparing strings . 15
8.3 Loops and recursion . 16

9 How to debug macros and input 18
9.1 Displaying macro definitions . 18
9.2 Tracing macro calls . 18
9.3 Controlling debugging output . 19
9.4 Saving debugging output . 20

iii

10 Input control . 21
10.1 Deleting whitespace in input . 21
10.2 Changing the quote characters . 21
10.3 Changing comment delimiters . 22
10.4 Saving input . 23

11 File inclusion . 24
11.1 Including named files . 24
11.2 Searching for include files . 25

12 Diverting and undiverting output 26
12.1 Diverting output . 26
12.2 Undiverting output . 26
12.3 Diversion numbers . 28
12.4 Discarding diverted text . 28

13 Macros for text handling . 29
13.1 Calculating length of strings . 29
13.2 Searching for substrings . 29
13.3 Searching for regular expressions . 29
13.4 Extracting substrings . 30
13.5 Translating characters . 30
13.6 Substituting text by regular expression . 30
13.7 Formatted output . 31

14 Macros for doing arithmetic 33
14.1 Decrement and increment operators . 33
14.2 Evaluating integer expressions . 33

15 Running Unix commands . 35
15.1 Executing simple commands . 35
15.2 Reading the output of commands . 35
15.3 Exit codes . 35
15.4 Making names for temporary files . 36

16 Miscellaneous built-in macros 37
16.1 Printing error messages . 37
16.2 Exiting from m4 . 37

17 Compatibility with other versions of m4 38
17.1 Extensions in GNU m4 . 38
17.2 Facilities in System V m4 not in GNU m4 . 38
17.3 Other incompatibilities . 39

iv

Concept index . 40

Macro index . 42

	1 Introduction to m4
	2 Using this manual
	3 Problems and bugs
	4 Invoking m4
	5 Lexical and syntactic conventions
	Names
	Quoted strings
	Other tokens
	Comments

	6 How to invoke macros
	Macro invocation
	Macro arguments
	Quoting macro arguments
	Macro expansion

	7 How to define new macros
	Defining a macro
	Arguments to macros
	Special arguments to macros
	Deleting a macro
	Renaming macros
	Temporarily redefining macros
	Indirect call of macros
	Indirect call of built-ins

	8 Conditionals, loops and recursion
	Testing macro definitions
	Comparing strings
	Loops and recursion

	9 How to debug macros and input
	Displaying macro definitions
	Tracing macro calls
	Controlling debugging output
	Saving debugging output

	10 Input control
	Deleting whitespace in input
	Changing the quote characters
	Changing comment delimiters
	Saving input

	11 File inclusion
	Including named files
	Searching for include files

	12 Diverting and undiverting output
	Diverting output
	Undiverting output
	Diversion numbers
	Discarding diverted text

	13 Macros for text handling
	Calculating length of strings
	Searching for substrings
	Searching for regular expressions
	Extracting substrings
	Translating characters
	Substituting text by regular expression
	Formatted output

	14 Macros for doing arithmetic
	Decrement and increment operators
	Evaluating integer expressions

	15 Running Unix commands
	Executing simple commands
	Reading the output of commands
	Exit codes
	Making names for temporary files

	16 Miscellaneous built-in macros
	Printing error messages
	Exiting from m4

	17 Compatibility with other versions of m4
	Extensions in GNU m4
	Facilities in System V m4 not in GNU m4
	Other incompatibilities

	Concept index
	Macro index

